

Introduction

Mushrooms typically grow in forests and fields, but almost all ecosystems will favor their growth in the correct substrate medium. They are considered as organisms that well bio-concentrate in fruitbodies certain mineral constituents absorbed by mycelium e.g. heavy metals or radiocaesium. Hence, to some degree mushrooms can be useful as indicators aiming to evaluate degree of soil pollution, while fruitbodies of edible species when loaded with heavy metals may pose a risk for consumer. This study aimed to assess potential radiotoxicity to human consumers from uranium (²³⁴U, ²³⁵U, ²³⁸U) accumulated in mushroom (*Boletus bainiugan*) collected in Yunnan Province (southern China).

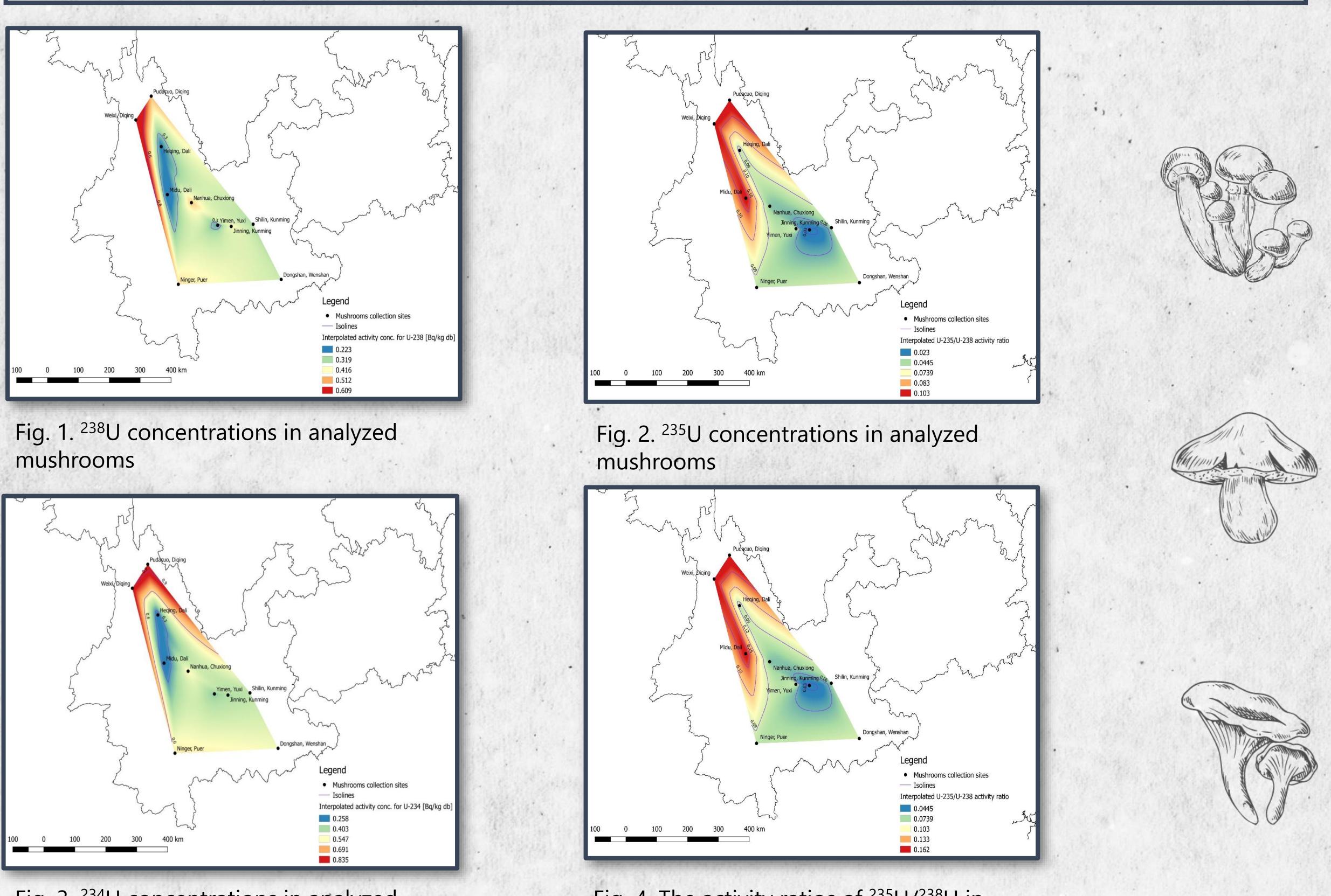
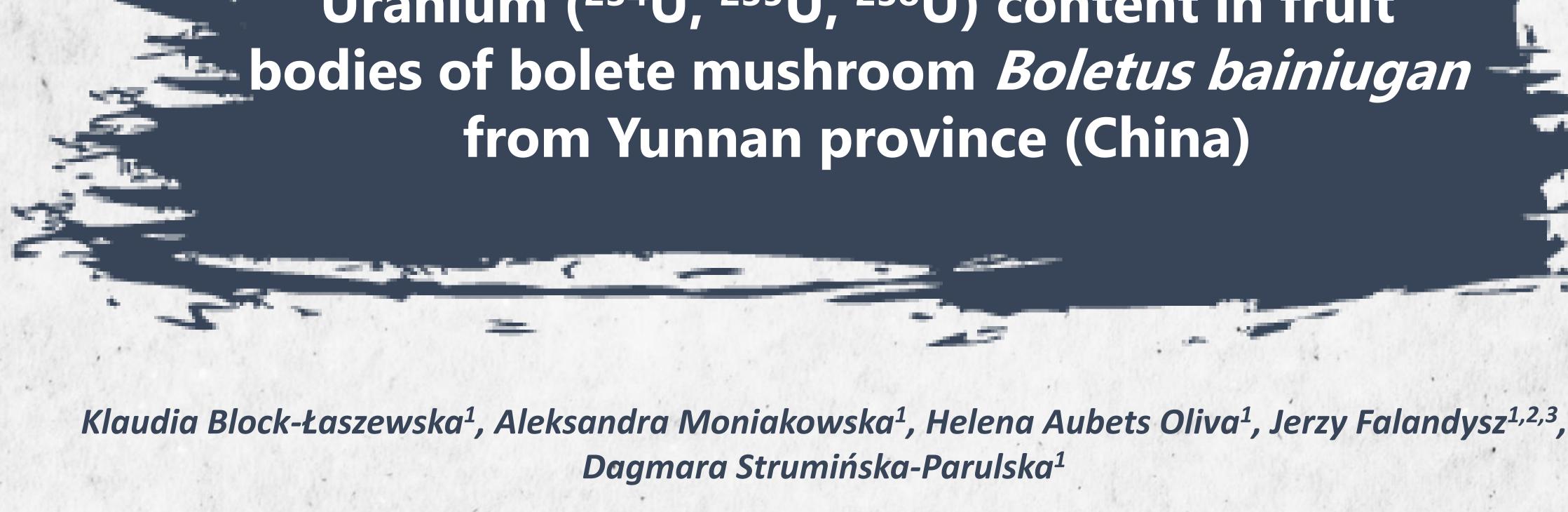



Fig. 3. ²³⁴U concentrations in analyzed mushrooms

¹University of Gdańsk, Faculty of Chemistry, Environmental Chemistry and Radiochemistry Department, Wita Stwosza 63, 80-308 Gdańsk, Poland ²Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, 650200 Kunming, China ³Yunnan Technical Center for Quality of Chinese Materia Medica, 650200 Kunming, China

Fig. 4. The activity ratios of ²³⁵U/²³⁸U in analyzed mushrooms

Uranium (²³⁴U, ²³⁵U, ²³⁸U) content in fruit bodies of bolete mushroom *Boletus bainiugan* from Yunnan province (China)

Sampling site	Effective dose		
	234U	235U	238U
	[nanoSv/kg dm]		
Jinning, Kunming	20.4±1.6	0.12±0.12	12.6±1.2
Yimen, Yuxi	22.8±2.2	0.63±0.37	13.9±1.6
Pudacuo, Diqing	48.0±10.2	2.10±2.10	22.0±6.6
Midu, Dali	9.2±0.9	0.68±0.24	6.7±0.7
Weixi, Diqing	43.6±16.4	2.99±2.99	34.3±14.0
Heqing, Dali	10.8±1.0	0.73±0.28	9.2±0.9
Dongshan, Wenshan	26.1±2.3	1.56±0.55	16.0±1.7
Shilin, Kunming	21.2±2.1	1.05±0.47	14.7±1.7
Nanhua, Chuxiong	24.7±2.3	1.51±0.57	21.9±2.1
Ninger, Puer	28.4±2.3	1.69±0.56	20.1±1.9

Tab. 1. The assessed average values of the effective radiation dose for adult members of the public from ²³⁴U, ²³⁵U and ²³⁸U

Results

The results of uranium measurement in analyzed mushrooms indicated the highest ²³⁴U activity was determined in samples from Pudacuo, Diqing (0.98 Bq/kg dry biomass), while the highest ²³⁸U activity was measured in samples from Weixi, Diqing (0.76 Bq/kg dry biomass). Moreover, the analysis of the values of ²³⁵U/²³⁸U activity ratio showed increased amount of ²³⁵U in northern Yunnan (Fig. 4.). On the basis of determined activities of analyzed radionuclides, the effective radiation doses from dried mushrooms consumption were calculated. The effective radiation doses for the human consumers were estimated would give from 9.2 to 43.6 nSv of ²³⁴U, from 0.12 to 2.99 nSv of ²³⁵U and from 6.7 to 34.3 nSv of ²³⁸U (Table 1). However, the results mean if consumers would eat the analyzed mushrooms, they should not increase significantly the total effective radiation dose from analyzed radionuclides when compared to their other sources from typical diet.

