Comparative U(VI) sorption on Fe-rich smectites with and without accessory Fe-oxides

Ursula Alonso , <u>Cynthia Rieckhof</u>*, Tiziana Missana, Ana M. Fernández, Miguel García-Gutiérrez

MINISTERIO **DE CIENCIA E INNOVACIÓN**

Ciemat Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

INTRODUCTION

- Bentonites with high smectite content are selected as barriers in radioactive waste repositories for their suitable confinement properties and for their high radionuclide retention capabilities .
- To guarantee safety, all processes that may affect radionuclide retention need to be assessed. In particular, the presence of Fe may play a role in the immobilization of redox-sensitive contaminants like uranium [1].
- Uranium retention in the clay barrier can be affected differently depending on the oxidation state and nature of the Fe present in the system: (1) Structural Fe²⁺ /Fe³⁺ in the clays; (2) Fe(II/III)-oxides as accessory minerals; (3) Dissolved Fe^{2+}/Fe^{3+} .

MATERIALS

- Smectite clays: Fe-rich nontronites (NAu1 and NAu2 from Uley Mine, Australia) [2]. A low in iron Ca-Mg bentonite (FEBEX from Cortijo de Archidona, Spain) [3].
- Purified fractions without accessory Fe-oxides were obtained following the methodology described in [4].

EXPERIMENTAL: SORPTION EXPERIMENTS

Batch sorption experiments

- Uranium (VI) sorption was analyzed by adding ²³³U on raw and on Fe-oxide-free clay suspensions (2 g/L) prepared in NaClO₄ at 10^{-1} M, under anoxic conditions. After one week, samples were centrifuged and ²³³U concentration was determined in solution by liquid scintillation counting.
- Distribution coefficients (K_d) were obtained as a function of pH, ionic strength and by varying uranium concentration.
- The competition of dissolved Fe²⁺ and Fe³⁺ with U for cation exchange sites in the clay was analyzed.
- Sorption experiments were carried out on Fe-oxide-free FEBEX clay, adding a fixed uranium concentration and varying Fe²⁺ or Fe³⁺ content.

Fig. 5. U(VI) distribution coefficient on Fe-free NAu1, Nau2 and FEBEX measured under anoxic conditions as a function of ionic strength (IS). Contact time 7 days.

At short equilibration times, no large differences on U(VI) retention on raw and Fe-oxide free smectite fractions were observed. This suggests that, in this case, the influence of Fe-accessory minerals is limited.

Increased U sorption measured at alkaline conditions may be due to precipitation or U reduction (in Nau-1 and NAu2, Eh after 1 week = 40 mV).

CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain

ursula.alonso@ciemat.es; *presenter: CynthiaEmilia.Rieckhof@ciemat.es

Fig. 1. Main source of Fe and relevant processes expected in the system: (1) Structural Fe²⁺ /Fe³⁺ in the clays; (2) Fe(II/III)-oxides as accessory minerals; (3) Dissolved Fe^{2+}/Fe^{3+} . SC = surface complexation; CE = cation exchange; R = reduction

Fig. 6. U(VI) sorption on Fe-free-FEBEX measured under anoxic conditions, adding different Fe(II) or Fe (III) concentrations in solution. Contact time 7 days.

Equilibrium solutions (2 g/L)	Mínimum Fe (mg/l)	Maximum Fe (mg/l)		
Fe-free NAu1	14 (pH 7.6)	130 (pH 9.6)		
Fe-free Nau2	5.1 (pH 4.4)	17 (pH 9.9)		
Fe-free FEBEX	0.09 (pH 4.5)	1.7 (pH 9.4)		

Table 3. Total Fe dissolved after 1 week from Fe-oxidesfree NAu1, NAu2 and FEBEX clays as a function of pH.

Physico-chemical characterization of raw and Fe-oxides-free clay fractions allowed to identify the location of structural Fe and the Fe-oxides and to evaluate relevant surface parameters, by different techniques (XRD, FT-IR, CEC,...)

Mineralogy (in weight %) (XRD analyses)								
Samples	Total Phyllosilicates	Quartz	K-Feldspar	Plagioclase	Calcite	Goethite	Biotite	Cristobalite
NAu-1	97	1	Tz		1	Tz	Tz	
NAu-2	95	1		1	1	2	Tz	Tz
FEBEX	94		1.3	0.4	2.5			2

Table 1. Main mineralogical composition (in weight %) obtained by XRD analyses on selected smectites. Tz = trace. Accessory minerals with Fe content are highlighted.

FEBEX

Fig. 3. Potentiometric titrations of NAu1 and NAu2 (20 g/L) in NaClO₄ at 10⁻¹ M and 10⁻² M. Simulation carried out considering a non-electrostatic model (NEM).

Fig. 7. U(VI) sorption on mixtures of FEBEX smectite with different goethite concentration (%) measured under anoxic conditions. Contact time 7 days.

> A 10 % of goethite increases U retention in smectite a 4%

CHARACTERISATION

NS / Non -electrostatic model (NEM)								
M M		≡SOH ⁺ ¢	⇒≡S _W OH	$+ H^+ \equiv S$	wOH⇔ pK _{a2}	$\equiv S_w 0$	⁻ + H ⁺	
M M M3		Table 2. №2), Catio (SOH) pro	Surface clone exchar Sperties of	haracteristi ige capaci studied cla	cs: Surfa ty (CEC), ys.	ce Are surfa	ea (BET- ace sites	
			Surface p	roperties	Surface sites (SOH) non-electrostatic			
CIO		Sample	BET-N ₂	CEC	Ns	nK	ml/	
4	-	Jampie	(m²/g)	(meq/100g)	(µeq/m²)	μν _{a1}	ρκ _{a2}	
4	- 10	NAu-1	(m²/g) 57.8	(meq/100g) 90 ± 5	(μeq/m²) 1.1	5.7	-8.6	

CONCLUSIONS

59.2^[6] 100 ± 4^[6] 1.02^[6] 5.3 -8.4

- The retention of U(VI) by cation exchange mechanisms was limited and the competition of dissolved Fe²⁺ and Fe³⁺ was found to be minimal.
- In contrast, the reduction capability of Fe²⁺ played a relevant role of U and may favour U retention at longer times.
- The results contribute to weigh the different role played by Fe as a structural cation or as an accessory oxide in the immobilization of U(VI) in clays.

ACKNOWLEDGEMENT

This study has received funding from the Europeans Union's Horizon 2020 research and innovation programme under grant agreement 847593.

REFERENCES

- [1] Ma, B. *et al.* App. Geochem. 10, 414-431 (2019)
- [2] Keeling, J.L. *et al.* Clays and Clay Min. 48, 537-548 (2000) [3] Huertas, F. et al. EC Final REPORT EUR 19147. EC Final REPORT EUR 19147 (2000)
- [4] Mehra, O.P. et al. Clays and Clay Min. 7, 317-327 (1960) [5] Jaisi, D.P. et al. Geochimica et Cosmochim. Acta 72, 5361-5371 (2008).
- [6] Missana, T. et al. Chemosphere 272, 129877 (2021).